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Nanopore-based, single-molecule sensing and analysis – general 
principle
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Key facts: the association and translocation time, along with the amplitude of the current
blockade depends on the charge, size and conformation of the molecule.



Concise applications of the nanopore technology

 sensing and separation (DNA, RNA, peptides, proteins, metals)

 single-molecule physics and chemistry

 study of proteins folding-unfolding   



 Usually the translocation process is too fast and 
precludes the precise characterization of the 
transiently present moieties inside the nanopore. 

x = 2.5 nm, D = 0.5 x 10-9 m2s-1

<t> ~ 6.25 ns

 Using pH-tuned single-molecule electrophysiology 
we demonstrate how peptide passage through the 
α-hemolysin protein can be sufficiently slowed 
down to observe intermediate single-peptide sub-
states along the pore.

1. Molecular braking of single-
molecule passage through a protein 

nanopore



Molecular braking of single-molecule 
passage through a protein nanopore

CAMA3; net charge ~ + 8 at neutral and acidic pH

KWKLFKKIGIGKFLQSAKKF-NH2

Peptide in (a) bulk, (b) α-HL’ lumen and (c) α-HL’s vestibule



Molecular braking of single-molecule 
passage through a protein nanopore

Mereuta, L. et al. Sci. Rep. 4,
3885; DOI:10.1038/srep03885
(2014).



Schematic representation of pH-augmented 
electroosmotic (ELO) braking
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Controlling the balance
between the ELF and ELO forces helps 

trapping the translocating peptides



Peptide braking unravels the directionality of peptide motion 
across the protein nanopore

Peptide added from trans (pH = 4.5):

Peptide added from cis (pH = 4.5)

V+

++

V-

V-



Insights into molecular behavior of a peptide inside the pore, subjected to 
confinement effects: (i) the diffusion coefficient 

D = 1.5*10-12 m2s-1 (drift-diffusion model)
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Diffusion of peptide with comparable size in
water: D = 5*10-10 m2 s-1÷ 10-9 m2 s-1.

A similarly sized peptide in a buffer slightly
more viscous that water, was measured to have
D = 2.4*10-12 m2 s-1.
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Molecular simulation of the peptide 
transit across the α-HL pore

Mereuta, L. et al. Sci. Rep. 4, 3885; DOI:10.1038/srep03885 (2014).

Mereuta, L. et al., ACS Applied Materials & Interfaces, 2014 6(15):13242-56.

Ioan Andricioaei’s Lab, University of California, Irvine, USA



elect. force

Insights into molecular behavior of a peptide inside the 
pore, subjected to confinement effects: (ii) peptide 

unfolding under ELF and ELO forces

pH=7pH=3

elo force

E

pH=3 pH=7



2. Salt-dependent folding of model 
antimicrobial peptides

 Folding events of β-hairpin peptides are triggered by the presence of salt, as a
direct consequence of the electrostatic screening between charged amino acids
within the peptide.

 Knowing that:
 the hairpin-like conformations constitute an important trigger for the

toxicity onset of peptides and proteins associated with human disorders
 given the impact of histidine residues in establishing peptides activity

We used the nanopore-based, ‘single-molecule’ analysis technique to
investigate the salt dependence of folding state of histidine-containing, β-
hairpin-like peptides.



Salt-dependent folding of model antimicrobial peptides
KWKLKKHIGIGKHFLSAKKF-NH2 + 8 e- (CAMA 3)

KWKLFKKIGIGKHFLSAKKF-NH2

Mereuta, L. et al., ACS Applied Materials & Interfaces, 2014 6(15):13242-56.

+ 8 e- (CAMA 1)



Salt-dependent folding of model antimicrobial peptides

Muthukumar, M., The Journal of Chemical Physics 132, 195101, 2010

The essential steps of peptide 
partitioning inside α-HL

The electrostatic field around distinct α-HL domains changes with pH and ion strength

Gu, L-Q. et al., PNAS, 97, 3959–396, 2000 Wong, C.T.A. and Muthukumar, M., 
The Journal of Chemical Physics 133, 045101, 2010



Salt-dependent folding of model antimicrobial peptides
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- The approach provides quantitative insights into the entropic barrier differences of rather similar peptides to partitioning
within confined nano-volumes

- This can be used to probe shifts in the relative populations of distinct folding states of peptides that occur in response to
precise altering of inter-residues electrostatic, coordinative or aromatic interactions, via single-point mutagenesis.
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Salt-dependent folding of model 
antimicrobial peptides

KWKLKKHIGIGKHFLSAKKF-NH2

KWKLFKKIGIGKHFLSAKKF-NH2



Salt-dependent folding of model antimicrobial peptides

ΔIB1/IO[0.5M]=0.81

ΔIB1/IO[2M]=0.91

ΔIB1/IO[2M]=0.97

ΔIB1/IO[0.5M]=0.80
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High salt

Low salt
KWKLFKKIGIGKHFLSAKKF-NH2

KWKLKKHIGIGKHFLSAKKF-NH2

Mereuta, L. et al., ACS Applied Materials & Interfaces, 2014 6(15):13242-56.



3. Bioanalytical applications of nanopore-
based devices. Application to metals 

sensing.

Detection of transition metal ions has become significant because low
contaminations of heavy and transition metal ions in waters were extremely toxic to
humans and other living organisms.

Although zinc ions are essential for human health, excess of zinc ions in human
body was reported to be responsible for several diseases including Alzheimer’s
disease.

A nanopore-based, single-molecule approach to various ions sensing would provide
benefits with respect to sensitivity, selectivity, portability, low cost, ease of use, and
rapid response, in real-world environmental or biological samples, which contain
ions in complex mixtures.



Bioanalytical applications of nanopore-based devices. 
Application to metals sensing.

Aβ (1-16):   intrinsically disordered peptide

Asp-Ala-Glu-Phe-Arg-His6-Asp-Ser-Gly-Tyr-Glu-Val-His13-His14-Glu-Lys

Peter Faller, P. et al., Acc. Chem. Res. 2014, 47, 2252−2259
Zirah, S. et al, JBC, 2006, 281, 2515-2161

Asandei A. et al., Langmuir, 2013, 29 (50), 15634-1564
Mereuta L. et al., Langmuir, 2012, DOI: 10.1021/la303782d



Bioanalytical applications of nanopore-
based devices. Application to metals 

sensing.

Asandei, A. et al., J. Membr. Biol., 2014, Jun;247(6):523-30. 



Bioanalytical applications of nanopore-
based devices. Application to metals 

sensing.



Bioanalytical applications of nanopore-
based devices. Application to metals 

sensing.



Bioanalytical applications of nanopore-
based devices. Application to metals 

sensing.
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Bioanalytical applications of nanopore-
based devices. Application to metals 

sensing.

Kd, Cu
2+ = 4.5 x 10-7 M

Kd, Zn
2+ = 9.2 x 10-5 M

Asandei, A. et al., J. Membr. Biol., 2014, Jun;247(6):523-30. 

+

kon

koff

metal peptide metal-peptide

Kd = koff/kon
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Thermal unfolding of goulash meat
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