Nanoscopic interrogation of
molecular interactions with
protein nanopores

Tudor Luchian, Department of Physics, Laboratory of Molecular Biophysics
and Medical Physics, Alexandru I. Cuza University, Iasi, Romania
E-mail: luchian@uaic.ro



Nanoscopic interrogation of
molecular interactions with
protein nanopores

O Brief overview of the nanopore sensing technique

O Molecular braking of single-molecule passage through a protein
nanopore

O Salt-dependent folding of model antimicrobial peptides

O Bioanalytical applications of nanopore-based devices.
Application to metals sensing



Nanopore-based, single-molecule sensing and analysis — general
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Nanopore-based, single-molecule sensing and analysis — general
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Key facts: the association and translocation time, along with the amplitude of the current
blockade depends on the charge, size and conformation of the molecule.
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Concise applications of the nanopore technology

» sensing and separation (DNA, RNA, peptides, proteins, metals)

» single-molecule physics and chemistry

» study of proteins folding-unfolding

Infroduction fo
nanopore sensing

Electronics for
nanopore sensing

‘The MiniON ™ device:
2 miniaturised sensing
system

‘The PromethlON™
system

‘The GridION™ system

Workflow versatiiity: no
fixed run ime-

Nanopore sensing-
informatics

Automaiic optimisation
of system performance

DNA: strand sequencing
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Home » Business, Policy & Funding » Business News » lllumina Licenses Nanopore-based Sequencing Technology from UAB-UW
DNA: An introduction to nanopore sequencing

Oxford Nanopore is developing ‘strand sequencing’, a method of DNA analysis that is compatible with the Company's GridiON™ and O @ @ 9 0 @
MInION™ systems.

‘Srand sequencing' is a technique that passes intact DNA polymers through a protein nanopore, sequencing in real tme as the DNA lllumina Licenses Nanopo re-based Sequencing

transiocates the pore. Oxford Nanopore intends fo commercialise this technology independently.

The fallowing movie is an introdLiction to nanopore DNA sequencing. For mare information please visit the specific pages linked above. Techno Iogy from UAB-UW

Oct 15, 2013 | a GenomeWeb staff reporter

8020 wy NEW YORK (GenomeWeb News) ~ The University of Alabama, Birmingham announced on Monday that it and the
COAALO University of Washington have licensed to lllumina the rights to nanopore sequencing technology developed by a

UAB micrebiologist and a University of Washington physicist.

The deal gives lllumina exclusive worldwide rights ta develop and market the technology developed by UAB's

Michael Niederweis and UW's Jens Gundlach. The UAB Research Foundation and UW have filed patent

applications covering the technology. Niederweis will serve as a consultant to llumina as part of the deal
Further terms of the agreement were not disclosed.

“Many companies and universities are looking at the potential of nanopore

S - technology, but the technology developed by Niederweis and Gundlach is
among the most promising,* Christian Henry, senior vice president and
RNA—Seq general manager of lllumina‘s Genomic Solutions business, said in a
STANDARDIZED statement.

UAB and UW's technology is based on attaching DNA polymerases to DNA
strands, which move through nanopores. One problem with nanopore-based
sequencing has been that DNA strands move too quickly through nanopores
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References Beyond 1000
As the genomics community pushes toward the $1,000 genome, Genia is looking beyond, to the $100 genome
bringing the benefits of genome sequencing out of the lab and into the everyday world.

Biological Nanopores: Structure-Based Sequencing of Single DNA Molecules

Genia's technology reduces the price of sequencing and increases speed, accuracy, and sensitivity by moving
away from complex sample preparation and optical detection. The heart of Genia's technology is the biclogical
nanopore, a protein pore embedded in a lipid bilayer membrane. Our planar electronic sensor technology
enables highly efficient nancpore-membrane assembly and accuracy of current readings, overcoming many of
the limitations faced by earlier nanopore sequencing efforts.

Genia's NanoTag sequencing approach, developed in collaboration with Columbia and Harvard University, uses
a DNA replication enzyme to sequence a template strand with single base precision as base-specific
engineered tags cleaved by the enzyme are captured by the nanopore. As the cleaved tags travel through the
pore, they attenuate the current flow across the membrane in a sequence-dependent manner (Figure 1).



1. Molecular braking of single-
molecule passage through a protein
nanopore

O Usually the translocation process is too fast and
precludes the precise characterization of the
transiently present moieties inside the nanopore.

Xx=2.5nm, D =0.5x10° m2s™
<t>~6.25ns

O Using pH-tuned single-molecule electrophysiology
we demonstrate how peptide passage through the
a-hemolysin protein can be sufficiently slowed
down to observe intermediate single-peptide sub-
states along the pore.



CAMAS3; net charge ~ + 8 at neutral and acidic pH

KWKLFKKIGIGKFLQSAKKF-NH2

(a) (b)

Peptide in (a) bulk, (b) a-HL lumen and (c) a-HL's vestibule



Mereuta, L. et al. Sci. Rep. 4,
3885; DOI:10.1038/srep03885
(2014).
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P, /Py = 0.86; pH 7.1
P, /P, = 0.44; pH 4.4
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Controlling the balance
between the ELF and ELO forces helps
trapping the translocating peptides

trans cis trans cis

& O




Peptide braking unravels the directionality of peptide motion
across the protein nanopore

Peptide added from trans (pH = 4.5):
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Insights into molecular behavior of a peptide inside the pore, subjected to
confinement effects: (i) the diffusion coefficient
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Molecular simulation of the peptide
transit across the a-HL pore

loan Andricioaei’s Lab, University of California, Irvine, USA

Mereuta, L. et al. Sci. Rep. 4, 3885; DOI:10.1038/srep03885 (2014).

Mereuta, L. et al., ACS Applied Materials & Interfaces, 2014 6(15):13242-56.



Insights into molecular behavior of a peptide inside the
pore, subjected to confinement effects: (ii) peptide
unfolding under ELF and ELO forces

a) pH=7.1 b) pH=5.1 ¢) pH=45 d) pH=3.3
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2. Salt-dependent folding of model
antimicrobial peptides

O Folding events of B-hairpin peptides are triggered by the presence of salt, as a
direct consequence of the electrostatic screening between charged amino acids
within the peptide.

U Knowing that:
O the hairpin-like conformations constitute an important trigger for the
toxicity onset of peptides and proteins associated with human disorders
O given the impact of histidine residues in establishing peptides activity

We used the nanopore-based, ‘single-molecule’ analysis technique to
investigate the salt dependence of folding state of histidine-containing, f-
hairpin-like peptides.



Salt-dependent folding of model antimicrobial peptides
KWKLKKHIGIGKHFLSAKKF-NH, + 8 e- (CAMA 3)
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Mereuta, L. et al., ACS Applied Materials & Interfaces, 2014 6(15):13242-56.



Salt-dependent folding of model antimicrobial peptides
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Salt-dependent folding of model antimicrobial peptides
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The approach provides quantitative insights into the entropic barrier differences of rather similar peptides to partitioning

within confined nano-volumes
This can be used to probe shifts in the relative populations of distinct folding states of peptides that occur in response to

precise altering of inter-residues electrostatic, coordinative or aromatic interactions, via single-point mutagenesis.



Salt-dependent folding of model
antimicrobial peptides
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Salt-dependent folding of model antimicrobial peptides
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3. Bioanalytical applications of nanopore-
based devices. Application to metals
sensing.

UDetection of transition metal ions has become significant because low
contaminations of heavy and transition metal ions in waters were extremely toxic to
humans and other living organisms.

QAlthough zinc ions are essential for human health, excess of zinc ions in human
body was reported to be responsible for several diseases including Alzheimer’s
disease.

LA nanopore-based, single-molecule approach to various ions sensing would provide
benefits with respect to sensitivity, selectivity, portability, low cost, ease of use, and
rapid response, in real-world environmental or biological samples, which contain
ions in complex mixtures.



Bioanalytical applications of nanopore-based devices.
Application to metals sensing.
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Bioanalytical applications of nanopore-
based devices. Application to metals
sensing.
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Bioanalytical applications of nanopore-
based devices. Application to metals
sensing.
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Bioanalytical applications of nanopore-

based devices. Application to metals
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Bioanalytical applications of nanopore-
based devices. Application to metals
sensing.
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Bioanalytical applications of nanopore-
based devices. Application to metals

sensing.
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