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Introduction.

By structured populations we mean a group of individuals
that differentiate through some physiological characteristic
e. g. age, size, genotype, etc.

Examples: populations of humans, animals, plants, cells,
viruses, etc.

A mathematical model of a structured populations will not
only track down the evolution in time of the number of
individuals but also the evolution in structure of the
considered population.
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Age structured systems.

F.R. Sharpe, A. Lotka, A.G. McKendrick
Dp(t, a) + µ(a)p(t, a) = 0; t > 0, a ∈ (0,A)

p(t, 0) =
∫ A

0 β(a)p(t, a) da; t > 0

p(0, a) = p0(a)

Notations:

t denotes the time and a - the age; A - the maximal age;

p(t, a) - the population density of age a at time t;

µ - the mortality rate;

β - the natality rate;

Dp - the directional derivative of p in the direction (t, a).
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More general models

The total population

P(t) =

∫ A

0
p(a, t) da, ∀t > 0

the fertility and mortality rates are supposed to depend on
the total population at each time t (M.E. Gurkin, R.C.
MacCamy, F. Hoppensteadt);

Books on age-structured systems: F. Hoppensteadt, B. Charlesworth,
J. Metz, O Dieckmann, J. Murray, N. Keyfitz, G. Webb

Control of age-dependent populations (books): S. Aniţa
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Size structured population models.

N. Kato, H. Torikata

∂
∂t p(t, s) + ∂

∂s [v(t, s)p(t, s)] = −µ(s,P(t))p(t, s)

P(t) =
∫ l

0 p(t, s) ds

p(t, 0) = C (t) +
∫ l

0 β(s,P(t))p(t, s) ds

p(0, s) = p0(s)

v - the growth function; gives the evolution in time of the
size of an individual of the population;

l - the maximal size that can be achieved;

v ≡ 1 - age-structured systems;

µ and β are the vital rates;
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Control problems associated with population
models.

By control we mean a strategy that will influence the evolution
of the population’s behavior in time in a predictable manner.

Stabilizability problems: finding a control function such
that the corresponding solution to the considered model to
have a specific large-time behavior.

Optimal control problems - finding a control strategy such
that the corresponding solution to maximize (minimize) a
given functional that has a certain interpretation (e.g.
maximize the harvest in population of plants or animals,
minimize the costs, etc.)
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Optimal control problems of size structured
systems. A general model

The model

max

{∫ S

0
l(p(T , s))ds

+

∫ T

0

∫ S

0
L(t, s, p(t, s), y(t), u(t, s), v(t))dsdt

}
,

subject to

∂
∂t p(t, s) + ∂

∂t [g(t, s, y(t), v(t))p(t, s)] = f (t, s, u, p, y , v)

y(t) =
∫ S

0 h(t, s, x(t, s))ds

p(t, 0) = ϕ(t, y(t))

p(0, s) = p0(s)
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Optimal control problems of size structured
systems. A general model

u and v are the control functions; u represents the harvest
and v can be interpreted as food supplies , water or heat
supply (in farming);

the first term of the objective function represents the rest
value of the population at the end of the planning horizon
and the second term incorporates the aggregated over age
and time “benefit” from x and “costs” of the controls u
and v

ϕ - the inflow of individuals of ”size zero”;

y(t) can represent one or more weighted means, e.g. the
total population if h = x , the biomass if h = sx ;
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Tărniceriu

Structured
populations.

Age-structured
systems

Size-structured
systems

Control
problems

A general optimal
control problem for
size-structured
populations

Population
density
approach for
neural
populations.

Single neuron models

Population density
models

A population density
model for
theta-neurons

Conclusions
and future
work

Optimal control problems of size structured systems

1 Optimal Control for a Class of Size-Structured Systems, C.
O. Tarniceriu, V.M.Veliov , Lecture Notes in Computer
Science, volume 4818, Springer Verlag, 2008.

an optimal control problem for size structured system
where the inflow of population of size zero is not taken
into account;

2 Numerical Optimal Control of Size-Structured
Populations, K. Georgiev, C. O. Tarniceriu, V.M.Veliov,
http://bis-21pp.acad.bg/results/results.htm

numerical method that applies to optimal control problems
of both size - and age - structured systems ;

3 Optimal Control of Size-Structured Systems. Numerical
simulations. C.O. Tarniceriu - in final stage;

Well-posedness of a general model for fixed controls.
Numerical simulations for the optimal control problem.
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Perspectives

One of the limitation of the model is the form of the influx
of the individuals of ”size zero”. In reality, not all the new
born have the same size. In this direction, a more complex
model has been proposed by J. Z.Farkas

Optimal control problem for the more complex model.

Stabilization control problems.
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Physiology

A typical neuron can be divided into three functionally distinct
parts: - dendrites (act as an input device);
- soma (processing unit);
- axon (output device).
If the total input exceeds a certain threshold value, an electrical
signal is generated, which is taken by the output device and
transmitted to other neurons.
The junction between two neurons is called synapse.
The transmitted signal - spike or action potential.
References for mathematical models of spiking neurons:
W. Gerstner and W. Kistler, Spiking neuron models, Cambridge
university press

E.M. Izhikevich ,Dynamical Systems in Neuroscience: The Geometry

of Excitability and Bursting,The MIT press
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Membrane’s potential

The membrane of a neuron separates the interior of the cell
from the extracellular liquid and acts as a capacitor. The
membrane’s potential of a neuron is defined as the difference of
electric potentials of the interior and exterior of the cell:

Membrane’s potential

V = Vint − Vext .

Ion channels are pore-forming membrane proteins whose
functions include establishing a resting membrane potential,
shaping action potentials and other electrical signals by gating
the flow of ions across the cell membrane.
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Ionic currents and conductances

Notations:

V – potential of the membrane;

ENa,EK ,ECl – reversal potentials of each ion species;

gNa, gK , gCl – corresponding conductances;

INa, IK , ICl – net current of each ion species;

Example

IK = gk(V − Ek)
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Ionic currents and conductances

Kirchoff’ law

I = C V̇ + INa + IK + ICa + ICl

V̇ = dV
dt

;

I – an external current ;

C –membrane’s capacitance.

The following dynamic system is obtained by replacing each
current:

C V̇ = I−gNa(V−ENa)−gCa(V−ECa)−gK (V−EK )−gCl(V−ECl)



Mathematical
models of
structured

populations.
Applications

in
Neuroscience.

C.O.
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Hodgkin-Huxley model.

In the typical Hodgkin-Huxley model, there are considered
three types of ionic channels: Na+, K + and a leakage channel.
The probability that a channel is open is described by three
aditional variables: m, n and h - the so called gating variables:

Hodgkin-Huxley model for giant squid axon neuron

C V̇ = I − INa − IK − IL

ṅ = αn(V )(1− n)− (βn(V ))n

ṁ = αm(V )(1−m)− (βm(V ))m

ḣ = αh(V )(1− h)− (βn(V ))h
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Hodgkin-Huxley (H-H) model

m, n, h - gating variables;

αn, αm, αh, βn, βm, βh – empirical functions;

INa = gNam3h(V − ENa);

IK = gKn4(V − EK );

IL = gL(V − EL).
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Reduced models

H-H model remains one of the most accurate model to
describe the internal mechanisms of the cell that lead to
the initiation of action-potentials

The very large number of neurons in the brain (1011), the
variability of the cell’s physiological characteristics and the
high number of the connections between them makes the
realistic simulations of large networks of neurons very
difficult to realize.

By additional assumptions (eg. taking the conductances of
the channels as being constant, etc), reduced models of
the H-H models have been introduced. They do not offer
all the complexity of the neural cell, but allow the
simulations of large number of interconnected neurons.
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Reduced models. Integrate-and-Fire model.

a simplified model with threshold; when the potential of
the membrane reaches the value of the threshold, it is
considered that an action potential has been initiated and
the membrane potential is reset to a reset value

Integrate-and-Fire

V̇ = −γV + I , V ∈ (vr , η)

+ reset mechanism: if V = η thenV = vr
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Reduced models. Quadratic Integrate-and-Fire
model. The equivalent theta-neuron model.

Quadratic Integrate-and-Fire

V̇ = V 2 + Ib, V ∈ R
+ reset mechanism: if V = +∞ thenV = −∞.

I - an external current. I is an important parameter of the
model that dictates different behaviors of the solution.

By changing the variable θ = 2 arctan v + π, the theta-neuron
model is obtained:

Ermentrout-Kopell

d

dt
θ(t) = (1 + cos θ) + (1− cos θ)Ib.
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Interconnected neurons. Population density
function for Integrate and Fire neurons.

For N →∞, the fraction of neurons having the membrane’s
potential in [v0, v0 + δv ] is:

lim
N→∞

neurons with v0 ≤ v(t) ≤ v0 + ∆v

∆v
=

∫ v0+∆v

v0

p(t, v ′) dv ′

p(t,v) - membrane potential density

How does the membrane potential density function evolves in
time?

Normalization: ∫ η

vr

p(t, v) dv = 1.

- expresses the fact that all neurons have the membrane
potential in the interval [vr , η].
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Interconnected neurons. Population density
function.

The population activity is defined as the fraction of the neurons
that ”flow” across the threshold, i.e.

r(t) = J(t, η)

Reinjection of neurons:

J(t, vr ) = J(t, η)

The flux is supposed to consists of two parts:

J(t, v) = Jdrift(t, v) + Jjump(t, v)
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Population density models for Integrate and Fire
neurons

In the case of Integrate-and fire neurons, the drift flux is given
by:

Jdrift(t, v) = [−γv + I ]p(t, v)

It is supposed next that, every time a neuron of the population
receives a signal, will have a jump in potential of magnitude h.
Denoting by σ the average reception rate of a neuron, the
jump-flux is given by:

Jjump = σ

∫ v

v−h
p(t, v ′) dv ′

The evolution in time of the density function is dictated by:

∂

∂t
p(t, v) = − ∂

∂v
J(t, v)
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Population density models for Integrate and Fire
neurons

A population density model for integrate and fire neurons:

L. Sirovich



∂

∂t
p(t, v) +

∂

∂v
((−γv)p(t, v)) = σ (p(t, v − h)− p(t, v))

+ δ(v)r(t)

p(t, 1) = 0

r(t) = σ

∫ 1

1−h

p(t, v) dv =
I

h

∫ 1

1−h

p(t, v)dv

p(0, v) = p0(v).
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Connected theta-neuron

Consider a population of interconnected quadratic integrate
and fire neurons

d
dt v(t) = v 2(t) + Ib + h

∑+∞
j=1 δ(t − tj)

If v = +∞ then v = −∞,

-tj - firing times; The equivalent theta-neuron model:

d

dt
θ(t) = (1 + cos θ) + (1− cos θ)Ib + s(θ)

+∞∑
j=1

δ(t − tj)

s(θ) =

(
θ − 2 arctan

(
h + tan

(
θ − π

2

)
+ π

))
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A population density model for theta-neurons

G. Dumont, J. Henry, C.O. Tarniceriu



∂

∂t
q(t, θ) +

∂

∂θ
(f (θ)q(t, θ)) = σ(t)(s ′(θ)q(t, s(θ))− q(t, θ)),

σ(t) = σ0(t) + J

∫ t

0
α(s)r(t − s) ds with conduction delay,

σ(t) = σ0(t) + Jr(t) without conduction delay,

r(t) = 2q(t, 2π),

q(t, 0) = q(t, 2π),

q(0, θ) = q0(θ),

(with θ ∈ [0, 2π], t ≥ 0).
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A population density model for theta-neurons

well-posedness for the above introduced model in the case
of both excitatory and inhibitory connections; global
existence in the linear case;

numerical simulations; comparison of the simulations to
direct simulations via Monte Carlo method

the stability of the stationary repartition

synchronized solution?
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Numerical simulations. Comparison with Monte
Carlo direct simulations.
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Carlo direct simulations.
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Papers

1 Analysis of Synchronization in a Neural Population by a
Population Density Approach, A. Garenne, J. Henry, C.O.
Tarniceriu, Math. Model. Nat. Phenom. Vol. 5, No. 2,
2010, pp. 5-25

a population density model for a population of neurons
individually described by the Izhikevich’s bi-dimensional
model
transition to phase-densities in the case of weak
connections between neurons;
condition for stabilization towards the synchronized
solution

2 Well-posedness of a density model for a population of
theta neurons, G. Dumont, J. Henry, C.O. Tarniceriu,
submitted to Journal of Mathematical Neuroscience

well-posedness
numerical simulations
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Conclusions and perspectives

The above models are obtained under the assumption of
homogeneity of the population, i.e. there are considered
populations of neurons with the same characteristics
(parameters, same firing threshold etc.). Considering
heterogeneous population will lead to more realistic
results. A possible differentiation of neurons has been
proposed by W. Gerstner and W. Kistler by supposing that
not all neurons will fire at a fixed threshold value, rather
than in an interval below a formal threshold value.

The age-structured systems have been extensively studied
in the last decades; we think that a passing from potential
densities to a certain age-structure in neural populations
may be done (”age” being the time elapsed since the last
firing of a neuron). This will help reducing the density
models to a more approachable form.
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Conclusions and perspectives

Once validated a model, the control problems for the
considered model is the next natural step. In particular,
the synchronized solution has been of great interest, since
synchronization of neurons is a phenomena that is found
both in physiological and pathological conditions.
Controlling the mechanisms that lead to such a behavior is
desirable.
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